如圖,設△ABC中角A,B,C所對的邊分別為a,b,c,AD為BC邊上的中線,已知c=1且2csinAcosB=asinA-bsinB+14bsinC,cos∠BAD=217.
(1)求b邊的長度;
(2)求△ABC的面積;
(3)設點E,F(xiàn)分別為邊AB,AC上的動點,線段EF交AD于G,且△AEF的面積為△ABC面積的一半,求AG?EF的最小值.
1
4
21
7
AG
?
EF
【考點】正弦定理;平面向量數(shù)量積的性質及其運算.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:917引用:9難度:0.3
相似題
-
1.在華羅庚著的《數(shù)學小叢書》中,由一個定理的推導過程,得出一個重要的正弦函數(shù)的不等式
≤sinsinα1+sinα2+…+sinαnn,若四邊形ABCD的四個內角為A,B,C,D,則α1+α2+…+αnn的最大值為( ?。?/h2>sinA+sinB+sinC+sinD4發(fā)布:2025/1/5 18:30:5組卷:71引用:1難度:0.7 -
2.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的( ?。?/h2>
發(fā)布:2025/1/5 18:30:5組卷:190引用:11難度:0.7 -
3.已知△ABC的內角A,B,C所對的邊分別為a,b,c,若B=30°,b=1,則
等于( ?。?/h2>a+b+csinA+sinB+sinC發(fā)布:2025/1/3 16:0:5組卷:68引用:4難度:0.8
把好題分享給你的好友吧~~