已知數(shù)列{an}滿足a1=1,an+1-2an=2n-1.
(1)設(shè)bn=an2n,證明:數(shù)列{bn}是等差數(shù)列;
(2)記Sn為等差數(shù)列{an}的前n項和,若對任意的n∈N*,不等式k?2n-1-nSn+23≤0恒成立,求實數(shù)k的最大值.
a
n
2
n
n
S
n
2
3
【考點】錯位相減法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:178引用:2難度:0.5
相似題
-
1.已知數(shù)列{an}是公差不為0的等差數(shù)列,前n項和為Sn,S9=144,a3是a1與a8的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足+log2bn=0,若cn=anbn,求數(shù)列{cn}前n項和為Tn.an-13發(fā)布:2024/12/29 12:0:2組卷:129引用:2難度:0.5 -
2.已知等差數(shù)列{an}的前n項和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
3.已知等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:434引用:14難度:0.6
把好題分享給你的好友吧~~