如圖為陜西博物館收藏的國寶——唐金筐寶鈿團(tuán)花紋金杯,杯身曲線內(nèi)收,玲瓏嬌美,巧奪天工,是唐代金銀細(xì)作的典范之作.該杯的主體部分可以近似看作是離心率為5的雙曲線C:x2-y2b2=1(b>0)的右支與y軸及平行于x軸的兩條直線圍成的曲邊四邊形ABMN繞y軸旋轉(zhuǎn)一周得到的幾何體,若P為C右支上的一點,F(xiàn)為C的左焦點,則|PF|與P到C的一條漸近線的距離之和的最小值為( ?。?/h1>
5
C
:
x
2
-
y
2
b
2
=
1
(
b
>
0
)
【考點】雙曲線的幾何特征.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:172引用:3難度:0.6
相似題
-
1.若雙曲線
-x28=1的漸近線方程為y=±2x,則實數(shù)m等于( ?。?/h2>y2m發(fā)布:2025/1/5 18:30:5組卷:26引用:1難度:0.9 -
2.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點,P是它們的公共點,且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( ?。?/h2>4e1e23e12+e22發(fā)布:2025/1/2 23:30:3組卷:199引用:2難度:0.5 -
3.已知雙曲線
的右焦點為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實軸長為( )3x±y=0發(fā)布:2025/1/2 19:0:5組卷:135引用:2難度:0.7
把好題分享給你的好友吧~~