甲、乙兩人進行投籃比賽,分輪次進行,每輪比賽甲、乙各投籃一次.比賽規(guī)定:若甲投中,乙未投中,甲得1分,乙得-1分;若甲未投中,乙投中,甲得-1分,乙得1分;若甲、乙都投中或都未投中,甲、乙均得0分.當甲、乙兩人累計得分的差值大于或等于4分時,就停止比賽,分數(shù)多的獲勝:4輪比賽后,若甲、乙兩人累計得分的差值小于4分也停止比賽,分數(shù)多的獲勝,分數(shù)相同則平局、甲、乙兩人投籃的命中率分別為0.5和0.6,且互不影響.一輪比賽中甲的得分記為X.
(1)求X的分布列;
(2)求甲、乙兩人最終平局的概率;
(3)記甲、乙一共進行了Y輪比賽,求Y的分布列及期望.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/16 8:0:9組卷:477引用:10難度:0.5
相似題
-
1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7