如圖①,在⊙O中,弦AD平分圓周角∠BAC,我們將圓中以A為公共點(diǎn)的三條弦AB,AC,AD構(gòu)成的圖形稱為圓中“爪形A”,弦AB,AC,AD稱為“爪形A”的爪.
已知四邊形ABCD內(nèi)接于⊙O,AB=BC,連接BD.(如圖②)
(1)證明:圓中存在“爪形D”;
(2)如圖③,若“爪形D”的爪之間滿足AD+CD=BD,求∠ADC的大??;
(3)如圖④,若∠ABC=90°,作點(diǎn)D關(guān)于BC對稱的點(diǎn)P,連接PA,PB,PC,試猜想PA,PB,PC三者之間的數(shù)量關(guān)系并給予證明.
【考點(diǎn)】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/27 1:0:4組卷:144引用:2難度:0.5
相似題
-
1.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
2.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請?jiān)趥溆脠D中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3 -
3.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1