高二學(xué)農(nóng)期間,某高中組織學(xué)生到工廠進行實踐勞動.在設(shè)計勞動中,某學(xué)生欲將一個底面半徑為20cm,高為40cm的實心圓錐體工件切割成一個圓柱體,并使圓柱體的一個底面落在圓錐體的底面內(nèi).
(1)求該圓柱的側(cè)面積的最大值;
(2)求該圓柱的體積的最大值.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 9:0:2組卷:37引用:1難度:0.5
相似題
-
1.如圖,在空間幾何體ABCDFE中,四邊形ABCD為直角梯形,四邊形ABEF為矩形,AB=AD=2,AF=BC=1,BC∥AD,AB⊥AD,BC⊥BE,
=3AM.MB
(1)證明:CF⊥ME;
(2)求三棱錐C-DEF的體積.發(fā)布:2025/1/2 8:0:1組卷:71引用:1難度:0.6 -
2.如圖,在幾何體ANB1BCC1中,四邊形ABB1N為梯形,四邊形BCC1B1為矩形,平面BCC1B1⊥平面ABB1N,AN∥BB1,AB⊥AN,BB1=2AB=2AN=8.
(1)求證:平面BNC⊥平面B1NC1;
(2)求三棱錐A-BCN與四棱錐N-BCC1B1的體積的比值.發(fā)布:2025/1/2 8:0:1組卷:36引用:3難度:0.5 -
3.如圖,空間幾何體ADE-BCF中,四邊形ABCD是梯形,四邊形CDEF
是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是線段AE上的動點.
(1)求證:AE⊥CD;
(2)試確定點M的位置,使AC∥平面MDF,并說明理由;
(3)在(2)的條件下,求空間幾何體ADM-BCF的體積.發(fā)布:2025/1/2 8:0:1組卷:298引用:5難度:0.3
把好題分享給你的好友吧~~