教育部印發(fā)《義務教育課程方案》和課程標準(2022年版),將勞動從原來的綜合實踐活動課程中獨立出來.某中學為了讓學生體驗農耕勞動,如圖(1)在正方形綠化帶ABCD內修建一個矩形耕種園AEFG,其中點G在AD上,點E在AB上,已知正方形綠化帶ABCD的面積為400m2,AB,AD是墻壁,BC、CD無墻壁.已知矩形耕種園AEFG的面積為正方形花園面積的14,該耕種園借助綠化帶的墻壁,只設置圍欄GF、EF即可.小明用所學的數(shù)學知識進行了如下探究.
![](https://img.jyeoo.net/quiz/images/svg/202306/576/a4606664.png)
(1)建立數(shù)學模型由題意知,此耕種園的面積為400×14=100(m2),設AE=x米,則AG=100x米.設所需圍欄的長度為y米,則y關于x的函數(shù)解析式為 y=100x+xy=100x+x;
(2)畫出函數(shù)圖象:
1
4
400
×
1
4
=
100
(
m
2
)
AG
=
100
x
y
=
100
x
+
x
y
=
100
x
+
x
x | 5 | 8 | 10 | 12.5 | 16 | 20 |
y | 25 | 20.5 | 20 | 20.5 | 22.25 | a |
25
25
;②請根據(jù)上表數(shù)據(jù),在如圖(2)所示的平面直角坐標系中描點,并畫出y關于x的函數(shù)圖象,其中,自變量x的取值范圍是
5≤x≤20
5≤x≤20
;(3)觀察函數(shù)圖象,解決問題:
①當所用圍欄20米時,求AE的長;
②若圍欄的長度為b米,則b的取值范圍為
20<b≤25
20<b≤25
時,每一個b值都對應兩種圍欄方式.【考點】四邊形綜合題.
【答案】;25;5≤x≤20;20<b≤25
y
=
100
x
+
x
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/16 15:0:8組卷:109引用:1難度:0.2
相似題
-
1.如圖,在菱形ABCD中,AB=10,sinB=
,點E從點B出發(fā)沿折線B-C-D向終點D運動.過點E作點E所在的邊(BC或CD)的垂線,交菱形其它的邊于點F,在EF的右側作矩形EFGH.35
(1)如圖1,點G在AC上.求證:FA=FG.
(2)若EF=FG,當EF過AC中點時,求AG的長.
(3)已知FG=8,設點E的運動路程為s.當s滿足什么條件時,以G,C,H為頂點的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:1993引用:3難度:0.1 -
2.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC.55
(1)求證:AE=CE;
(2)當點P在線段BC上時,設BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當點P在線段BC的延長線上時,若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1 -
3.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點A作對角線BD的平行線與邊CD的延長線相交于點E.P為邊BD上的一個動點(不與端點B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點P的運動過程中,試探究下列兩個式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2