探索新知:
如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個角的平分線是是這個角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ=12α或13α或23α12α或13α或23α;(用含α的代數(shù)式表示出所有可能的結(jié)果)
深入研究:
如圖2,若∠MPN=60°,且射線PQ繞點P從PN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當PQ與PN成180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.
(3)當t為何值時,射線PM是∠QPN的“巧分線”;
(4)若射線PM同時繞點P以每秒5°的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當射線PQ是∠MPN的“巧分線”時t的值.
1
2
1
3
2
3
1
2
1
3
2
3
【考點】旋轉(zhuǎn)的性質(zhì).
【答案】是;α或α或α
1
2
1
3
2
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/18 8:0:9組卷:7156引用:21難度:0.1
相似題
-
1.如圖,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點A順時針旋轉(zhuǎn)到①,可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=2+
;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=3+3;…按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點P2023為止,則AP2023等于 .3發(fā)布:2025/1/28 8:0:2組卷:434引用:2難度:0.6 -
2.如圖,在Rt△ABC中,∠ACB=90°,AC=2,BC=
,邊AB上有一動點P,將△ABC繞點C順時針旋轉(zhuǎn)90°得△DEC,點A,B的對應(yīng)點分別為點D,E,點P的對應(yīng)點為P',連接CP,CP',PP',則△CPP'周長的最小值為 .233發(fā)布:2025/1/28 8:0:2組卷:910引用:2難度:0.3 -
3.如圖,AB是圓O的直徑,將AB繞點B旋轉(zhuǎn)30°后交圓O于D點,點E是弦BD上一個動點,連接AE并延長交圓O于點F,若圓O的半徑為5,則
的最小值 .AEEF發(fā)布:2025/1/28 8:0:2組卷:37引用:1難度:0.6