(1)已知函數(shù)f(x)=logax(a>0且a≠1),若f(x)在區(qū)間[a,2a]上的最大值與最小值之差為1,求a的值;
(2)若a>0,解關(guān)于x的不等式log13(-ax-1)>log13(a-x2).
lo
g
1
3
(
-
ax
-
1
)
>
lo
g
1
3
(
a
-
x
2
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/28 23:30:2組卷:117引用:4難度:0.7
相似題
-
1.設(shè)常數(shù)a>0且a≠1,若函數(shù)y=loga(x+1)在區(qū)間[0,1]上的最大值為1,最小值為0,則實數(shù)a=.
發(fā)布:2024/8/27 13:0:9組卷:104引用:2難度:0.8 -
2.已知函數(shù)f(x)=loga(kx2-2x+6)(a>0且a≠1)
(1)若函數(shù)的定義域為R,求實數(shù)k的取值范圍;
(2)是否存在實數(shù)k,使得函數(shù)f(x)在區(qū)間[2,3]上為增函數(shù),且最大值2?求出k的值;若不存在,求出k的值,若不存在,請說明理由.發(fā)布:2024/8/20 9:0:2組卷:394引用:3難度:0.5 -
3.已知函數(shù)f(x)=log2(x+a).
(1)當a=2時,解不等式:f(x)<2log2x;
(2)若函數(shù)y=|f(x)|在x∈[-1,2]上的最大值為log23,求a的值;
(3)當a>0時,記,若對任意的x∈(0,2),函數(shù)y=f(x)的圖像總在函數(shù)y=g(x)的圖像的下方,求正數(shù)a的取值范圍.g(x)=12f(4x)發(fā)布:2024/10/19 2:0:2組卷:360引用:2難度:0.2
把好題分享給你的好友吧~~