定義:對(duì)任意一個(gè)兩位數(shù)m,如果m滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“互異數(shù)”.將一個(gè)“互異數(shù)”的個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與11的商記為f(m).例如:m=12,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù)21,新兩位數(shù)與原兩位數(shù)的和為21+12=33,和與11的商為33÷11=3,所以f(12)=3.
根據(jù)以上定義,回答下列問題:
(1)下列兩位數(shù)30,52,77中,“互異數(shù)”為 5252;f(24)=66.
(2)若“互異數(shù)”b滿足f(b)=5,求出所有“互異數(shù)”b的值;
(3)如果m,n都是“互異數(shù)”,且m+n=100,求f(m)+f(n)的值.
【考點(diǎn)】因式分解的應(yīng)用.
【答案】52;6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:103引用:3難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2508引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4
把好題分享給你的好友吧~~