如圖1,⊙I與直線a相離,過圓心I作直線a的垂線,垂足為H,且交⊙I于P、Q兩點(Q在P、H之間).我們把點P稱為⊙I關(guān)于直線a的“遠點“,把PQ?PH的值稱為⊙I關(guān)于直線a的“特征數(shù)”.
(1)如圖2,在平面直角坐標系xOy中,點E的坐標為(0,4).半徑為1的⊙O與兩坐標軸交于點A、B、C、D.
①過點E畫垂直于y軸的直線m,則⊙O關(guān)于直線m的“遠點”是點 DD(填“A”、“B”、“C”或“D”),⊙O關(guān)于直線m的“特征數(shù)”為 1010;
②若直線n的函數(shù)表達式為y=3x+4.求⊙O關(guān)于直線n的“特征數(shù)”;
(2)在平面直角坐標系xOy中,直線l經(jīng)過點M(1,4),點F是坐標平面內(nèi)一點,以F為圓心,2為半徑作⊙F.若⊙F與直線l相離,點N(-1,0)是⊙F關(guān)于直線l的“遠點”.且⊙F關(guān)于直線l的“特征數(shù)”是45,求直線l的函數(shù)表達式.
3
2
5
【考點】圓的綜合題.
【答案】D;10
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:3317引用:9難度:0.1
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉(zhuǎn),得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當GM=GD時,求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3