【建立模型】
課本第7頁介紹:美國總統(tǒng)伽菲爾德利用圖1驗證了勾股定理,直線l過等腰直角三角形ABC的直角頂點C:過點A作AD⊥l于點D,過點B作BE⊥l于點E;研究圖形,不難發(fā)現(xiàn):△ADC≌△CEB.(無需證明):
【模型運用】
(1)如圖2,在平面直角坐標系中,等腰Rt△ABC,∠ACB=90°,AC=BC,點C的坐標為(0,-2),A點的坐標為(4,0),求B點坐標;
(2)如圖3,在平面直角坐標系,點B(6,4),過點B作AB⊥y軸于點A,作BC⊥x軸于點C,P為線段BC上的一個動點,點Q(a,2a-4)位于第一象限.問點A,P,Q能否構成以點Q為直角頂點的等腰直角三角形,若能,請求出a的值;若不能,請說明理由.
【考點】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:121引用:2難度:0.1
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:185引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:145引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(當點D落在射線FB上時停止旋轉).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1693引用:10難度:0.1