已知公比為q的正項等比數列{an},其首項a1>1,前n項和為Sn,前n項積為Tn,且函數f(x)=x(x+a1)(x+a2)?(x+a9)在點(0,0)處切線斜率為1,則( ?。?/h1>
【考點】數列與函數的綜合.
【答案】B;C;D
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/12/29 10:30:1組卷:30引用:3難度:0.5
相似題
-
1.已知一組2n(n∈N*)個數據:a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數為N,方差為s2,則( )
發(fā)布:2024/12/29 7:30:2組卷:54難度:0.5 -
2.已知點A
是函數f(x)=ax(a>0且a≠1)的圖象上一點,等比數列an的前n項和為f(n)-c,數列bn(bn>0)的首項為c,且前n項和Sn滿足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求數列{an}與{bn}的通項公式.
(2)若數列的前n項和為Tn,問滿足Tn{1bnbn+1}的最小整數是多少?>10002011
(3)若,求數列Cn的前n項和Pn.Cn=-2bnan發(fā)布:2025/1/12 8:0:1組卷:35引用:3難度:0.1 -
3.先閱讀參考材料,再解決此問題:
參考材料:求拋物線弧y=x2(0≤x≤2)與x軸及直線x=2圍成的封閉圖形的面積
解:把區(qū)間[0,2]進行n等分,得n-1個分點A(,0)(i=1,2,3,…,n-1),過分點Ai,作x軸的垂線,交拋物線于Bi,并如圖構造n-1個矩形,先求出n-1個矩形的面積和Sn-1,再求2inSn-1,即是封閉圖形的面積,又每個矩形的寬為limn→∞,第i個矩形的高為(2n)2,所以第i個矩形的面積為2in?(2n)2;2in
Sn-1=[2n+4?12n2+4?22n2+…+4?32n2]=4?(n-1)2n2[12+22+32+…+(n-1)2]=8n3?8n3n(n-1)(2n-1)6
所以封閉圖形的面積為limn→∞?8n3=n(n-1)(2n-1)683
閱讀以上材料,并解決此問題:已知對任意大于4的正整數n,不等式+1-12n2+1-22n2+…+1-32n2<an恒成立,則實數a的取值范圍為.1-(n-1)2n2發(fā)布:2024/12/29 7:0:1組卷:71難度:0.5
把好題分享給你的好友吧~~