已知函數(shù)f(x)=ex-lnx-(a-1)x(a∈[0,1],其中e為自然對數(shù)的底數(shù)).
(1)求曲線y=f(x)在點(1,e+1)處的切線方程;
(2)若a=1,證明:f'(x)有且只有一個零點,且f(x)>2;
(3)當(dāng)a∈(0,1)時,若f(x1)-f(x2)=ex1-ex2且x1≠x2,求證:x1+x2>21-a.
f
(
x
1
)
-
f
(
x
2
)
=
e
x
1
-
e
x
2
x
1
+
x
2
>
2
1
-
a
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/5 9:0:8組卷:43引用:1難度:0.2
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1 -
3.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5
把好題分享給你的好友吧~~