閱讀下列材料,解決問題:
我們把一個能被17整除的自然數(shù)稱為“節(jié)儉數(shù)”.“節(jié)儉數(shù)”的特征是:若把一個自然數(shù)的個位數(shù)字截去,再把剩下的數(shù)減去截去的那個個位數(shù)字的5倍,如果差是17的整數(shù)倍(包括0),則原數(shù)能被17整除,如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的“截尾,倍尾,差尾,驗差”的過程,直到能方便判斷為止.例如:判斷1675282是不是“節(jié)儉數(shù)”,判斷過程:167528-2×5=167518,16751-8×5=16711,1671-1×5=1666,166-6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)13-6×5=-17,-17是17的整數(shù)倍,所以1675282能被17整除,所以1675282是“節(jié)儉數(shù)”.
(1)請用上述方法判斷7259和2098752是否是“節(jié)儉數(shù)”,并說明理由.
(2)一個五位節(jié)儉數(shù)ab213,其中千位上的數(shù)字為b,萬位上的數(shù)字為a,且b=a-1,請利用上面方法求出這個數(shù).
ab
213
【考點】因式分解的應用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:44引用:1難度:0.6
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結論為:.發(fā)布:2024/12/23 18:0:1組卷:2517引用:25難度:0.6 -
2.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(shù)(寫明驗證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( )
發(fā)布:2024/12/24 6:30:3組卷:388引用:7難度:0.6