試卷征集
加入會員
操作視頻

已知雙曲線C:
x
2
a
2
-
y
2
b
2
=
1
a
0
b
0
的離心率為
5

(1)求雙曲線C的漸近線方程;
(2)動直線l分別交雙曲線C的漸近線于A,B兩點(A,B分別在第一、四象限),且△OAB(O為坐標(biāo)原點)的面積恒為8,是否存在總與直線l有且只有一個公共點的雙曲線C,若存在,求出雙曲線的方程;若不存在,說明理由.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:98引用:2難度:0.5
相似題
  • 1.已知雙曲線的方程為
    x
    2
    -
    y
    2
    4
    =
    1
    ,過點P(1,0)的直線l與雙曲線只有一個公共點,則l的條數(shù)為( ?。?/h2>

    發(fā)布:2024/7/4 8:0:9組卷:12引用:1難度:0.6
  • 2.已知雙曲線C:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>0,b>0)與雙曲線
    x
    2
    2
    -
    y
    2
    2
    =1有相同的焦點,且C的一條漸近線與直線x-
    3
    y+2=0平行.(1)求雙曲線C的方程;
    (2)若直線l:y=kx+
    2
    與雙曲線C的左、右兩支各有一個公共點,求實數(shù)k的取值范圍;
    (3)若直線l:y=kx+
    2
    與雙曲線C僅有一個公共點,求k的取值范圍.

    發(fā)布:2024/7/1 8:0:9組卷:10引用:0難度:0.6
  • 3.設(shè)C1是以F為焦點的拋物線y2=2px(p>0),C2是以直線2x-
    3
    y=0與2x+
    3
    y=0為漸近線,以(0,
    ±
    7
    )為焦點的雙曲線.C1與C2在第一象限有兩個公共點A、B.
    (1)求雙曲線C2的標(biāo)準(zhǔn)方程;
    (2)求
    FA
    ?
    FB
    的最大值;
    (3)是否存在正數(shù)p,使得此時△FAB的重心G恰好在雙曲線C2的漸近線上?若存在,求出p的值;若不存在,請說明理由.

    發(fā)布:2024/6/27 10:35:59組卷:248引用:1難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正