2022-2023學(xué)年北京理工大學(xué)附中高二(下)期中數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題共10小題,每小題4分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)。
-
1.復(fù)數(shù)
的模為( ?。?/h2>1+ii組卷:43引用:1難度:0.8 -
2.若曲線y=x2的一條切線的斜率為4,則切點(diǎn)的橫坐標(biāo)為( )
組卷:261引用:3難度:0.7 -
3.曲線
的離心率為( ?。?/h2>x2-y22=1組卷:115引用:1難度:0.9 -
4.直線ax-y+2a=0(a∈R)與圓x2+y2=5的位置關(guān)系為( ?。?/h2>
組卷:231引用:4難度:0.8 -
5.數(shù)列{an}的前n項(xiàng)和為Sn,若Sn-Sn-1=2n-1(n≥2),且S2=3,則a1+a3=( ?。?/h2>
組卷:60引用:1難度:0.8 -
6.若等比數(shù)列{an}滿足a1a5=a3,則a3=( )
組卷:53引用:4難度:0.9 -
7.對(duì)于函數(shù)
的描述,下列說法正確的是( ?。?/h2>f(x)=xlnx組卷:76引用:1難度:0.7
三、解答題。共6小題,共85分。解答應(yīng)寫出文字說明,演算步驟或證明過程。
-
20.已知函數(shù)
.f(x)=ex-ax-alnx(a∈R)
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間;
(3)當(dāng)a≥e時(shí),寫出函數(shù)f(x)的零點(diǎn)個(gè)數(shù).(只需直接寫出結(jié)果)組卷:95引用:1難度:0.4 -
21.若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)
.Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n)
(Ⅰ)求g(6),g(20)的值;
(Ⅱ)求S1,S2,S3的值;
(Ⅲ)求數(shù)列{Sn}的通項(xiàng)公式.組卷:52引用:3難度:0.5