2022年四川省成都市溫江區(qū)高考數(shù)學(xué)適應(yīng)性試卷(理科)
發(fā)布:2024/11/7 22:30:1
一、選擇題.本大題共12小題,每小題5分.在每題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.集合A={x|-1≤x≤3},B={y|y=x2,x∈A},則A∪B=( ?。?/h2>
A.[1,3] B.[-1,9] C.[0,3] D.[1,9] 組卷:441引用:1難度:0.9 -
2.復(fù)數(shù)z滿足
=1+i(其中i是虛數(shù)單位),則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于( ?。?/h2>2i-z1-2iA.第一象限 B.第二象限 C.第三象限 D.第四象限 組卷:204引用:1難度:0.8 -
3.下列說法正確的是( ?。?/h2>
A.命題“?x≥1,lnx≥0”的否定為“?x0<1,lnx0<0” B.命題“不等式f(x)<g(x)恒成立”等價(jià)于“[f(x)]max<[g(x)]min” C.“若a=-1,則函數(shù)y=ax2+4x-4有一個(gè)零點(diǎn)”的逆命題是真命題 D.若(x-1)2+(y-2)2≠0,則x≠1或y≠2 組卷:62引用:1難度:0.6 -
4.若(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a2|+|a3|+|a4|+|a5|=( ?。?/h2>
A.244 B.243 C.242 D.241 組卷:245引用:3難度:0.7 -
5.執(zhí)行如圖所示的程序框圖,則輸出的N的值與下面的哪個(gè)數(shù)最接近?( ?。?/h2>
A. 1049B. 104×(1+2ln3)9C. 104×(8-2ln3)9D. 1+2ln39組卷:14引用:2難度:0.6 -
6.△ABC中,BC邊上的點(diǎn)D滿足
,AB?AD=AC?AD,點(diǎn)G在三角形內(nèi),滿足|AD|=3,則GA+GB+GC=0的值為( ?。?/h2>AG?ADA. 92B.3 C.6 D.12 組卷:388引用:3難度:0.5 -
7.給定正數(shù)a,b及實(shí)數(shù)m,記
,若滿足A∩Bm=?的實(shí)數(shù)m的取值集合為{2,-2},則( ?。?/h2>A={(x,y)|x2a2-y2b2=1},Bm={(x,y)|yx-1=m}A.a(chǎn)=2,b=1 B.a(chǎn)=4,b=1 C.a(chǎn)=1,b=2 D.a(chǎn)=1,b=4 組卷:113引用:3難度:0.6
[選修4-4:坐標(biāo)系與參數(shù)方程]
-
22.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
(t為參數(shù),α為常數(shù)且x=1+tcosαy=1+tsinα),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為:ρ2-2ρsinθ-4=0.α≠π2
(Ⅰ)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(Ⅱ)點(diǎn)P(1,1),直線l與曲線C交于A,B兩點(diǎn),若|PA|=2|PB|,求直線l的斜率.組卷:308引用:3難度:0.5
[選修4-5:不等式選講]
-
23.已知函數(shù)
,m≠0.f(x)=|x-m|+|x+4m|
(Ⅰ)若m=1,f(x)<7,求實(shí)數(shù)x的取值范圍;
(Ⅱ)求證:?x∈R,f(x)≥4.組卷:32引用:3難度:0.6