2018-2019學(xué)年新疆喀什地區(qū)莎車縣職業(yè)高中高一(上)期中數(shù)學(xué)試卷
發(fā)布:2024/12/31 5:30:4
一、單選題本題共16小題,每小題3分,共48分。
-
1.已知c>1,且x=
-c+1,y=c-c,則x,y之間的大小關(guān)系是( ?。?/h2>c-1組卷:10引用:4難度:0.8 -
2.根據(jù)如圖函數(shù)圖象,既是奇函數(shù)又是增函數(shù)的是( ?。?/h2>
組卷:6引用:1難度:0.8 -
3.已知函數(shù)f(x)=x7+ax3+1.若f(-m)=-3,則f(m)=( ?。?/h2>
組卷:3引用:2難度:0.9 -
4.函數(shù)
的定義域是( ?。?/h2>y=x4-x2組卷:1引用:2難度:0.7 -
5.下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( ?。?/h2>
組卷:107引用:2難度:0.9 -
6.設(shè)M=(x-1)(x-5),N=(x-3)2,則M與N的大小關(guān)系是( ?。?/h2>
組卷:9引用:4難度:0.8 -
7.設(shè)函數(shù)
,則函數(shù)f(x)( )f(x)=2x2-x+1x(x<0)組卷:7引用:5難度:0.6 -
8.不等式x2-4>0的解集是( ?。?/h2>
組卷:64引用:2難度:0.7
三、解答題每題8分,共32分組成。
-
23.已知三個不等式:ab>0,bc-ad>0,
(其中a,b,c,d均為實數(shù)),用其中兩個不等式作為條件,余下的一個不等式作為結(jié)論組成一個命題,請寫出可組成正確命題的兩個命題.ca-db>0組卷:4引用:1難度:0.9 -
24.判斷下列對應(yīng)是否為從A到B的函數(shù).
(1)A={1,2,3,4,5},B={0,2,4,6,8},對任意的x∈A,x→2x;
(2)A={1,2,3,4},B={x|x<10,x∈N},對任意的x∈A,x→2x+1;
(3)A=B=N*,對任意的x∈A,x→x-1;
(4)A為正實數(shù)集,B=R,對任意的x∈A,x→x的算術(shù)平方根.組卷:4引用:1難度:0.8