2022-2023學年浙江省金華市義烏市后宅中學等三校九年級(上)期末數學試卷
發(fā)布:2024/12/5 21:0:2
一、選擇題(本大題共10小題,共30分)
-
1.-5的倒數是( )
組卷:1780引用:616難度:0.9 -
2.下列計算正確的是( ?。?/h2>
組卷:209引用:5難度:0.7 -
3.一個布袋里裝有5個球,其中3個紅球,2個白球,每個球除顏色外其余都相同,則從布袋里任意摸出一個球是紅球的概率是( ?。?/h2>
組卷:43引用:2難度:0.7 -
4.用配方法解方程x2-6x-8=0時,配方結果正確的是( )
組卷:4040引用:82難度:0.8 -
5.如圖,∠BAC=36°,點O在邊AB上,⊙O與邊AC相切于點D,交邊AB于點E,F,連接FD,則∠AFD等于( )
組卷:3227引用:33難度:0.6 -
6.如圖,小樹AB在路燈O的照射下形成投影BC.若樹高AB=2m,樹影BC=3m,樹與路燈的水平距離BP=4.5m.則路燈的高度OP為( )
組卷:492難度:0.5 -
7.若二次函數y=kx2-2x-1的圖象與x軸有交點,則k的取值范圍是( ?。?/h2>
組卷:240引用:2難度:0.7 -
8.如圖,已知點O是矩形ABCD的對稱中心,且AB>AD.點E從點A出發(fā)沿AB向點B運動,移動到點B停止,延長EO交CD于點F,則四邊形AECF的形狀不可能是( ?。?/h2>
組卷:73引用:2難度:0.5
三、解答題(本題有8小題,第17~19題每題6分,第20、21題每題8分,第22、23題每題10分,第24題12分,共66分)
-
23.在平面直角坐標系xOy中,拋物線y=ax2-2ax-3a(a≠0)頂點為P,且該拋物線與x軸交于A,B兩點(點A在點B的左側).我們規(guī)定:拋物線與x軸圍成的封閉區(qū)域稱為“G區(qū)域”(不包含邊界);橫、縱坐標都是整數的點稱為整點.
(1)求拋物線y=ax2-2ax-3a頂點P的坐標(用含a的代數式表示);
(2)如果拋物線y=ax2-2ax-3a經過(1,3).
①求a的值;
②在①的條件下,直接寫出“G區(qū)域”內整點的個數.
(3)如果拋物線y=ax2-2ax-3a在“G區(qū)域”內有4個整點,直接寫出a的取值范圍.組卷:1471引用:8難度:0.1 -
24.如圖1,矩形ABCD中,AB=8,BC=6,點E,F分別為AB,AD邊上任意一點,現將△AEF沿直線EF對折,點A對應點為點G.
(1)如圖2,當EF∥BD,且點G落在對角線BD上時,求DG的長;
(2)如圖3,連接DG,當EF∥BD且△DFG是直角三角形時,求AE的值;
(3)當AE=2AF時,FG的延長線交△BCD的邊于點H,是否存在一點H,使得以E,H,G為頂點的三角形與△AEF相似,若存在,請求出AE的值;若不存在,請說明理由組卷:1228難度:0.1