2022-2023學(xué)年貴州省六盤水二中高二(上)月考數(shù)學(xué)試卷(10月份)
發(fā)布:2024/4/20 14:35:0
一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
-
1.若集合A={x|x>1},B={x|x2+3x>0}.則A∩B=( ?。?/h2>
組卷:24引用:3難度:0.8 -
2.復(fù)數(shù)z滿足(3-4i2021)?z=5i2022,則z在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( ?。?/h2>
組卷:25引用:2難度:0.8 -
3.已知一直線經(jīng)過點(diǎn)A(2,3,2),B(-1,0,5),下列向量中不是該直線的方向向量的為( ?。?/h2>
組卷:119引用:4難度:0.8 -
4.已知點(diǎn)A(1,-2),B(m,2)且線段AB的垂直平分線的方程是x+2y-2=0,則實(shí)數(shù)m的值是( )
組卷:57引用:4難度:0.7 -
5.已知向量
=(1,2),a=(1,0),b=(2,3),若λ為實(shí)數(shù),(2c+λa)⊥b,則λ=( ?。?/h2>c組卷:84引用:3難度:0.7 -
6.已知
,sin(α+β)=15,則sin(α-β)=35的值為( ?。?/h2>tanαtanβ組卷:215引用:6難度:0.9 -
7.已知斜三棱柱ABC-A1B1C1所有棱長(zhǎng)均為2,
,點(diǎn)E、F滿足∠A1AB=∠A1AC=π3,AE=12AA1,則BF=12BC=( ?。?/h2>|EF|組卷:804引用:14難度:0.6
四、解答題:本題共6小題,共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。
-
21.對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為不等函數(shù).
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.
已知函數(shù)g(x)=x3與h(x)=2x-a是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為不等函數(shù)?并說明理由;
(2)若函數(shù)h(x)是不等函數(shù),求實(shí)數(shù)a組成的集合.組卷:665引用:9難度:0.1 -
22.如圖,點(diǎn)C在以AB為直徑的圓O上(C不同于A,B),PA垂直于圓O所在平面,G為△AOC的重心,PA=AB=2,N在線段PA上,且AN=2NP.
(1)證明:NG∥平面POC;
(2)在圓O上是否存在點(diǎn)C,使得二面角A-OP-G的余弦值為?若存在,指出點(diǎn)C的位置;若不存在,說明理由.23組卷:82引用:3難度:0.5