試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2008-2009學年廣東省實驗中學高二(上)模塊考試數(shù)學試卷(理科)(選修2-1)

發(fā)布:2024/12/4 23:30:2

一、選擇題(每小題5分,共45分)

  • 1.橢圓
    x
    2
    25
    +
    y
    2
    9
    =1上一點P到一個焦點的距離為5,則P到另一個焦點的距離為(  )

    組卷:1189引用:9難度:0.9
  • 2.已知向量
    a
    =(0,2,1),
    b
    =(-1,1,-2),則
    a
    b
    的夾角為( ?。?/h2>

    組卷:110引用:40難度:0.9
  • 3.在平行六面體ABCD-A1B1C1D1中,化簡
    B
    B
    1
    +
    AB
    -
    DA
    =( ?。?/h2>

    組卷:25引用:5難度:0.9
  • 4.已知命題p:?x∈R,sinx≤1,則(  )

    組卷:702引用:137難度:0.9
  • 5.已知點P(-1,3,-4),且該點在坐標平面yOz,xOz,xOy上的射影的坐標依次為(x1,y1,z1),(x2,y2,z2)和(x3,y3,z3),則(  )

    組卷:27引用:5難度:0.9
  • 6.若“x2-3x+2≠0”是“x≠1”的( ?。l件.

    組卷:76引用:7難度:0.9

三、解答題(14題10分,15題12分,16題13分,共35分)

  • 菁優(yōu)網19.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,P在平面ABCD上的射影為G,且G在AD上,且AG=
    1
    3
    GD,BG⊥GC,GB=GC=2,E是BC的中點,四面體P-BCG的體積為
    8
    3

    (Ⅰ)求異面直線GE與PC所成的角余弦值;
    (Ⅱ)求點D到平面PBG的距離;
    (Ⅲ)若F點是棱PC上一點,且DF⊥GC,求
    PF
    FC
    的值.

    組卷:456引用:10難度:0.5
  • 20.已知F1(-1,0),F(xiàn)2(1,0),點p滿足
    |
    PF
    1
    |
    +
    |
    PF
    2
    |
    =
    2
    2
    ,記點P的軌跡為E.
    (Ⅰ)求軌跡E的方程;
    (Ⅱ)過點F2(1,0)作直線l與軌跡E交于不同的兩點A、B,設
    F
    2
    A
    =
    λ
    F
    2
    B
    ,T(2,0),若λ∈[-2,-1],求
    |
    TA
    +
    TB
    |
    的取值范圍.

    組卷:27引用:3難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正