試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2021-2022學(xué)年江蘇省蘇州市常熟市高一(上)期中數(shù)學(xué)試卷

發(fā)布:2024/8/26 22:0:8

一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分,在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  • 1.設(shè)集合A={x∈N|x2-x-2<0},則集合A的真子集有( ?。?/h2>

    組卷:423引用:4難度:0.9
  • 2.“函數(shù)f(x)=(a-2)x+3在R上為減函數(shù)”是“a∈(0,1)”的( ?。?/h2>

    組卷:50引用:5難度:0.7
  • 3.已知函數(shù)f(x+2)=x2+x,則f(1)的值為( ?。?/h2>

    組卷:51引用:3難度:0.7
  • 4.已知函數(shù)
    f
    x
    =
    x
    2
    +
    1
    ,
    x
    1
    2
    x
    ,
    x
    1
    ,若f(a)=10,則實(shí)數(shù)a的值是(  )

    組卷:52引用:7難度:0.7
  • 5.若函數(shù)f(x)=(m2-2m-2)xm-1是冪函數(shù),且y=f(x)在(0,+∞)上單調(diào)遞增,則f(2)=( ?。?/h2>

    組卷:785引用:9難度:0.8
  • 6.已知函數(shù)f(x)=mx2+2x+m在(-1,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是( ?。?/h2>

    組卷:140引用:3難度:0.5
  • 7.十六世紀(jì)中葉,英國數(shù)學(xué)家雷科德在《礪智石》一書中首先把“=”作為等號使用,后來英國數(shù)學(xué)家哈利奧特首次使用“<”和“>”符號,并逐漸被數(shù)學(xué)界接受,不等號的引入對不等式的發(fā)展影響深遠(yuǎn).若a,b,c∈R,則下列命題正確的是( ?。?/h2>

    組卷:96引用:3難度:0.8

四、解答題:本題共6小題,共70分.請在答題卡指定區(qū)域內(nèi)作答.解答時應(yīng)寫出文字說明、證明過程或演算步驟.

  • 21.已知函數(shù)f(x)=x2+(x-1)|x-a|.
    (1)若a≤-2,設(shè)函數(shù)f(x)在[-2,+∞)上最小值為g(a),求g(a)的解析式;
    (2)若函數(shù)f(x)在[-2,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

    組卷:55引用:2難度:0.5
  • 22.若函數(shù)f(x)在x∈[a,b]時,函數(shù)值y的取值區(qū)間恰為
    [
    1
    b
    1
    a
    ]
    ,就稱區(qū)間[a,b]為f(x)的一個“倒域區(qū)間”.已知定義在[-2,2]上的奇函數(shù)g(x),當(dāng)x∈[0,2]時,g(x)=-x2+2x.
    (1)求g(x)的解析式;
    (2)求函數(shù)g(x)在[1,2]內(nèi)的“倒域區(qū)間”;
    (3)求函數(shù)g(x)在定義域內(nèi)的所有“倒域區(qū)間”.

    組卷:321引用:6難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正