2023-2024學年廣東省廣州市育才中學高二(上)期中數學試卷
發(fā)布:2024/10/5 1:0:1
一、單項選擇題:(每小題5分,共40分)
-
1.已知直線x+my-3=0的傾斜角為150°,則實數m的值為( ?。?/h2>
組卷:31難度:0.8 -
2.如圖,在長方體ABCD-A1B1C1D1中,化簡
=( ?。?/h2>AB-AD+CC1組卷:134引用:8難度:0.9 -
3.方程
+(x-4)2+y2=10的化簡結果是( ?。?/h2>(x+4)2+y2組卷:450引用:15難度:0.7 -
4.一條光線從點P(5,8)射出,與x軸相交于點Q(-1,0),則反射光線所在直線在y軸上的截距為( ?。?/h2>
組卷:112引用:6難度:0.8 -
5.已知橢圓
為橢圓的對稱中心,F為橢圓的一個焦點,P為橢圓上一點,PF⊥x軸,PF與橢圓的另一個交點為點Q,△POQ為等腰直角三角形,則橢圓的離心率為( ?。?/h2>C:x2a2+y2b2=1(a>b>0),O組卷:113引用:9難度:0.5 -
6.已知向量
,若O,A,B,C共面,則OA=(0,1,2),OB=(-1,0,1),OC=(2,1,λ)在OC上的投影向量的模為( ?。?/h2>OB組卷:319引用:9難度:0.7 -
7.德國數學家米勒曾提出過如下的“最大視角定理”(也稱“米勒定理”):若點A,B是∠MON的OM邊上的兩個定點,C是ON邊上的一個動點,當且僅當△ABC的外接圓與邊ON相切于點C時,∠ACB最大.在平面直角坐標系中,已知點D(2,0),E(4,0),點F是y軸負半軸的一個動點,當∠DFE最大時,△DEF的外接圓的方程是( ?。?/h2>
組卷:149引用:4難度:0.5
四、解答題:(共70分)
-
21.如圖1,已知ABFE是直角梯形,EF∥AB,∠ABF=90°,∠BAE=60°,C、D分別為BF、AE的中點,AB=5,EF=1,將直角梯形ABFE沿CD翻折,使得二面角F-DC-B的大小為60°,如圖2所示,設N為BC的中點.
(1)證明:FN⊥AD;
(2)若M為AE上一點,且,則當λ為何值時,直線BM與平面ADE所成角的正弦值為AMAE=λ.5714組卷:350引用:10難度:0.4 -
22.已知橢圓
的焦距為2,且經過點C:x2a2+y2b2=1(a>b>0).P(1,32)
(1)求橢圓C的方程;
(2)經過橢圓右焦點F且斜率為k(k≠0)的動直線l與橢圓交于A、B兩點,試問x軸上是否存在異于點F的定點T,使得直線TA和TB關于x軸對稱?若存在,求出T點坐標,若不存在,說明理由.組卷:72引用:1難度:0.5