2022-2023學年浙江省寧波外國語學校九年級(上)返校考數(shù)學試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(每題4分,共20分)
-
1.根據(jù)下列表格的對應值,判斷方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的一個解x的范圍是( ?。?br />
x 3.23 3.24 3.25 3.26 ax2+bx+c -0.06 -0.02 0.03 0.09 組卷:1396引用:59難度:0.7 -
2.若平行四邊形的一條邊長為7,則它的兩條對角線的長可以是( ?。?/h2>
組卷:248引用:1難度:0.5 -
3.點A、B、C、D在同一平面內(nèi),從①AB∥CD;②AB=CD;③BC∥AD;④BC=AD這四個條件中任意選兩個,能使四邊形ABCD是平行四邊形的有( ?。?/h2>
組卷:861引用:77難度:0.9 -
4.如圖,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,F(xiàn)G⊥BC,則AE=( ?。?/h2>
組卷:2114引用:7難度:0.7 -
5.如圖,在直角坐標系中,正方形OABC的頂點O與原點重合,頂點A、C分別在x軸、y軸上,反比例函數(shù)
(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點M、N,ND⊥x軸,垂足為D,連接OM、ON、MN.下列結論:y=kx
①△OCN≌△OAM;②ON=MN;③四邊形DAMN與△MON面積相等;④若∠MON=45°,MN=2,則點C的坐標為(0,).2+1
其中正確結論的個數(shù)是( )組卷:2858引用:56難度:0.7
二、填空(每題4分,共40分)
-
6.將拋物線y=x2+x-1向左平移2個單位,再向上平移3個單位,則此時拋物線的解析式是 .
組卷:379引用:1難度:0.6
三、解答題(共40分)
-
17.如圖,直線l經(jīng)過點A(1,0),且與雙曲線y=
(x>0)交于點B(2,1),過點P(p,p-1)(p>1)作x軸的平行線分別交曲線y=mx(x>0)和y=-mx(x<0)于M,N兩點.mx
(1)求m的值及直線l的表達式;
(2)是否存在實數(shù)p,使得S△AMN=2S△APM?若存在,請求出所有滿足條件的p的值;若不存在,請說明理由.組卷:135引用:1難度:0.6 -
18.如圖所示,已知A,B兩點的坐標分別為(2
,0),(0,2),點P是△AOB外接圓上一點,且∠AOP=45°,OP與AB交于C點.3
(1)求∠BAO的度數(shù);
(2)求OC及AC的長;
(3)求OP的長及點P的坐標.組卷:1201引用:1難度:0.3