2023-2024學(xué)年江蘇省南通市如東縣高三(上)質(zhì)檢數(shù)學(xué)試卷(9月份)
發(fā)布:2024/10/25 2:0:2
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有
-
1.已知集合M={-2,-1,0,1,2},N={x|lnx≥0},則M∩N=( ?。?/h2>
組卷:38引用:3難度:0.8 -
2.已知向量
,a滿足|b|=1,|a|=b,|3-2a|=3,則|b-a|=( ?。?/h2>b組卷:332引用:2難度:0.8 -
3.已知函數(shù)f(x)=-x2+4x,x∈[m,4]的值域是[0,4],則實(shí)數(shù)m的取值范圍是( )
組卷:181引用:6難度:0.8 -
4.已知
,則sin(α+π6)=63=( ?。?/h2>sin(π6-2α)組卷:236引用:3難度:0.9 -
5.設(shè)p:|x-a|≤3,q:2x2+x-1≤0,若p是q的必要不充分條件,則實(shí)數(shù)a的取值范圍是( ?。?/h2>
組卷:320引用:10難度:0.8 -
6.已知f(x)=
(a≠0)是奇函數(shù),則f(x)在x=0處的切線方程是( ?。?/h2>eax-1ex組卷:236引用:6難度:0.5 -
7.已知△ABC是邊長為4的等邊三角形,將它沿中線AD折起得四面體A-BCD,使得此時(shí)BC=2
,則四面體A-BCD的外接球表面積為( ?。?/h2>3組卷:119引用:5難度:0.5
四、解答題:本題共6小題,共70分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
-
21.記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC面積為
,D為BC的中點(diǎn),且AD=1.3
(1)若∠ADC=,求tanA;π3
(2)若,求△ABC的周長.2AB?AC+CA?CB+BA?BC=8組卷:68引用:1難度:0.4 -
22.已知x=1是函數(shù)f(x)=(x2+ax-1)ex的極值點(diǎn).
(1)求f(x)的極值;
(2)證明:過點(diǎn)(1,f(1))可以作曲線y=f(x)的兩條切線.組卷:50引用:1難度:0.5