2023-2024學(xué)年北京市海淀區(qū)民大附中八年級(jí)(上)期中數(shù)學(xué)試卷
發(fā)布:2024/9/25 12:0:1
一、選擇題(本大題共8小題,共24.0分。在每小題列出的選項(xiàng)中,選出符合題目的一項(xiàng))
-
1.在平面直角坐標(biāo)系xOy中,點(diǎn)P(-3,5)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是( )
組卷:247引用:17難度:0.9 -
2.在下列長(zhǎng)度的四根木棒中,能與3cm,8cm長(zhǎng)的兩根木棒釘成一個(gè)三角形的是( ?。?/h2>
組卷:343引用:12難度:0.6 -
3.如圖,在△ABC中,AB=AC,AD是△ABC的邊BC上的中線,那么可以證明△ABD≌△ACD,這里證明全等所使用的判定方法是( ?。?/h2>
組卷:82引用:3難度:0.6 -
4.如圖,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,則點(diǎn)D到AB的距離為( ?。?/h2>
組卷:360引用:20難度:0.9 -
5.如圖所示,AB=AC,AD=AE,∠BAC=∠DAE,B、D、E三點(diǎn)共線,∠1=25°,∠2=30°,則∠3=( ?。?/h2>
組卷:948引用:23難度:0.7 -
6.兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中AD=CD,AB=CB,詹姆斯在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,12
其中正確的結(jié)論有( ?。?/h2>組卷:5102引用:87難度:0.9 -
7.如圖,已知∠BOP與OP上的點(diǎn)C,點(diǎn)A,小臨同學(xué)現(xiàn)進(jìn)行如下操作:①以點(diǎn)O為圓心,OC長(zhǎng)為半徑畫弧,交OB于點(diǎn)D,連接CD;②以點(diǎn)A為圓心,OC長(zhǎng)為半徑畫弧,交OA于點(diǎn)M;③以點(diǎn)M為圓心,CD長(zhǎng)為半徑畫弧,交第2步中所畫的弧于點(diǎn)E,連接ME.下列結(jié)論不能由上述操作結(jié)果得出的是( ?。?/h2>
組卷:432引用:12難度:0.7 -
8.如圖1,△ABC中,AB=AC,D為BC中點(diǎn),把△ABC紙片沿AD對(duì)折得到△ADC,如圖2,點(diǎn)E和點(diǎn)F分別為AD,AC上的動(dòng)點(diǎn),把△ADC紙片沿EF折疊,使得點(diǎn)A落在△ADC的外部,如圖3所示.設(shè)∠1-∠2=α,則下列等式成立的是( )
組卷:431引用:9難度:0.7
三、解答題(本大題共8小題,共60.0分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟)
-
23.在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC的延長(zhǎng)線上,M是BD的中點(diǎn),E是射線CA上一動(dòng)點(diǎn),且CE=CD,連接AD,作DF⊥AD,DF交EM延長(zhǎng)線于點(diǎn)F.
(1)如圖1,當(dāng)點(diǎn)E在CA上時(shí),填空:AD DF(填“=”、“<”或“>”).
(2)如圖2,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),請(qǐng)根據(jù)題意將圖形補(bǔ)全,判斷AD與DF的數(shù)量關(guān)系,并證明你的結(jié)論.組卷:974引用:13難度:0.5 -
24.小聰和小明兩位同學(xué)在學(xué)習(xí)全等三角形時(shí)積極思考,提出了以下兩個(gè)問(wèn)題:
問(wèn)題1:如圖1,△ABC中,AB=3,AC=2,AD是△ABC的角平分線,求BD:DC的值.
小聰同學(xué)經(jīng)過(guò)思考,發(fā)現(xiàn)可以過(guò)D作DM⊥AB于M,DN⊥AC于N,利用△ABD與△ACD的面積比來(lái)解決這個(gè)問(wèn)題.
問(wèn)題2:如圖2,△ABC為等邊三角形,點(diǎn)D為△ABC外一點(diǎn),∠CDA=60°,連接DB,探究AD,CD,BD三者之間的數(shù)量關(guān)系.
小明同學(xué)經(jīng)過(guò)思考,發(fā)現(xiàn)可以在DA上截取DE=DC,構(gòu)造等邊三角形CDE,從而解決這個(gè)問(wèn)題.
(1)根據(jù)兩位同學(xué)的思考,完成問(wèn)題1、2的解答(直接寫出結(jié)果).
(2)根據(jù)問(wèn)題1、2的結(jié)論,解決下面問(wèn)題:如圖3,△ABC和△CDE都是等邊三角形,且B、C、E三點(diǎn)共線,連接AE,BD交于點(diǎn)F,連接FC,設(shè)AF=a,DF=b,CF=c,若BC=2CE,直接寫出的值.a-2b3c組卷:473引用:4難度:0.4