2023-2024學(xué)年北京市首都師大附中昌平學(xué)校高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/9/23 12:0:8
一、選擇題(每題4分)
-
1.設(shè)A(3,2,1),B(1,0,5),則AB的中點(diǎn)M的坐標(biāo)為( ?。?/h2>
組卷:522引用:4難度:0.8 -
2.直線(xiàn)
的傾斜角為( ?。?/h2>x+y-3=0組卷:129引用:3難度:0.9 -
3.已知以點(diǎn)A(2,-3)為圓心,半徑長(zhǎng)等于5的圓O,則點(diǎn)M(5,-7)與圓O的位置關(guān)系是( )
組卷:725引用:10難度:0.9 -
4.已知向量
=(-3,2,5),a=(1,x,-1),且b⊥a,則x的值為( ?。?/h2>b組卷:348引用:21難度:0.8 -
5.點(diǎn)(1,1)到直線(xiàn)x-y-1=0的距離是( ?。?/h2>
組卷:576引用:2難度:0.8 -
6.如圖,在平行六面體ABCD-A′B′C′D′中,若
,AB=a,AD=b,則AA′=c=( ?。?/h2>BM組卷:288引用:4難度:0.7 -
7.平面α的法向量為(3,1,-2),平面β的法向量為(-1,1,k),若α⊥β,則k=( ?。?/h2>
組卷:126引用:4難度:0.7
三、解答題(17-19題13分,20題14分,21題15分,22題12分)
-
21.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,M、N分別是AA1,BB1的中點(diǎn),AB=AA1=2,AC=1.
(Ⅰ)求證:C1M⊥CN;
(Ⅱ)求直線(xiàn)CN與平面BCM所成角的正弦值;
(Ⅲ)求平面BCM與平面ABB1A1所成角的余弦值.組卷:183引用:3難度:0.4 -
22.在xOy平面上,我們把與定點(diǎn)F1(-a,0)、F2(a,0)(a>0)距離之積等于a2的動(dòng)點(diǎn)的軌跡稱(chēng)為伯努利雙紐線(xiàn),F(xiàn)1、F2為該曲線(xiàn)的兩個(gè)焦點(diǎn).已知曲線(xiàn)C:(x2+y2)2=9(x2-y2)是一條伯努利雙紐線(xiàn).
(1)求曲線(xiàn)C的焦點(diǎn)F1、F2的坐標(biāo);
(2)判斷曲線(xiàn)C上是否存在兩個(gè)不同的點(diǎn)A、B(異于坐標(biāo)原點(diǎn)O),使得以AB為直徑的圓過(guò)坐標(biāo)原點(diǎn)O.如果存在,求點(diǎn)A、B坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.組卷:67引用:3難度:0.5