2023年湖南省常德市漢壽縣西竺山中學(xué)中考數(shù)學(xué)一模試卷
發(fā)布:2024/4/29 8:6:34
一、選擇題(本大題8個(gè)小題,每小題3分,滿分24分)
-
1.在3.14,
,-227,5,364,1.01001000100001這六個(gè)數(shù)中,無理數(shù)有( ?。?/h2>π2組卷:158引用:2難度:0.9 -
2.下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( ?。?/h2>
組卷:128引用:5難度:0.9 -
3.下列計(jì)算正確的是( ?。?/h2>
組卷:21引用:2難度:0.7 -
4.為了解我市參加中考的5000名學(xué)生的身高情況,抽查了其中200名學(xué)生的身高進(jìn)行統(tǒng)計(jì)分析.下列敘述正確的是( ?。?/h2>
組卷:176引用:4難度:0.6 -
5.一個(gè)不透明的袋子中裝有2個(gè)紅球、2個(gè)藍(lán)球,小球除顏色外其他均相同,若同時(shí)從袋子中任取兩個(gè)小球,則摸到的兩個(gè)小球中,至少有一個(gè)小球?yàn)樗{(lán)色的概率為( ?。?/h2>
組卷:183引用:6難度:0.5 -
6.已知a、b是一元二次方程x2+5x+3=0的兩個(gè)根,則
的值是( ?。?/h2>aba+bab組卷:760引用:2難度:0.7 -
7.我們把b2±4ac=0稱為一元二次方程ax2+bx+c=0(其中a≠0)的共軛判別式,我們知道當(dāng)b2-4ac=0時(shí),一元二次方程ax2+bx+c=0(其中a≠0)有兩個(gè)相等的實(shí)數(shù)根:x1=x2=
;那么其共軛判別式b2+4ac=0時(shí),一元二次方程ax2+bx+c=0(其中a≠0)的根x=______,下列選項(xiàng)中正確的是( ?。?/h2>-b2a組卷:659引用:4難度:0.6 -
8.如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點(diǎn),且DE=DF,連接BF,CE,下列說法:①△ABD和△ACD面積相等;②△BDF≌△CDE;③BF∥CE;④CE=AE;⑤△ABD和△ACD周長相等.其中正確的個(gè)數(shù)有( ?。?/h2>
組卷:186引用:2難度:0.5
七、(本大題2個(gè)小題,每小題10分,滿分20分)
-
25.二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(3,0)點(diǎn),當(dāng)x=1時(shí),函數(shù)的最小值為-4.
(1)求該二次函數(shù)的解析式并畫出它的圖象;
(2)當(dāng)0<x<4時(shí),結(jié)合函數(shù)圖象,直接寫出y的取值范圍;
(3)直線x=m與拋物線y=ax2+bx+c(a≠0)和直線y=x-3的交點(diǎn)分別為點(diǎn)C,點(diǎn)D,點(diǎn)C位于點(diǎn)D的上方,結(jié)合函數(shù)的圖象直接寫出m的取值范圍.組卷:380引用:3難度:0.5 -
26.如圖1,在正方形ABCD中,AB=4,點(diǎn)P是射線BC上一點(diǎn),連接PA,PD.
(1)當(dāng)點(diǎn)P是邊BC的中點(diǎn)時(shí),求證:△ABP≌△DCP;
(2)如圖2,點(diǎn)E,F(xiàn),G,H分別是AD,DC,CP,PA的中點(diǎn),依次連接EF,F(xiàn)G,GH,HE.
①請判斷四邊形EFGH的形狀,并說明理由;
②若點(diǎn)Q是PD的中點(diǎn),連接EQ,F(xiàn)Q,當(dāng)△EQF的面積為時(shí),求BP的長.12組卷:57引用:4難度:0.3