2022-2023學(xué)年河南省周口市沈丘縣長安高級中學(xué)高一(上)期中數(shù)學(xué)試卷
發(fā)布:2024/12/7 23:0:1
一、選擇題:本大題共12小題,每小題5分,在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一個(gè)是符合題目要求的.
-
1.設(shè)集合A={1,2},B={2,4,6},則A∪B=( ?。?/h2>
組卷:1877引用:8難度:0.8 -
2.下列函數(shù)中與y=x是同一個(gè)函數(shù)的是( )
組卷:556引用:10難度:0.7 -
3.不等式-x2+3x+18<0的解集為( ?。?/h2>
組卷:759引用:9難度:0.9 -
4.若函數(shù)y=(m2-m-1)?mx是指數(shù)函數(shù),則m等于( ?。?/h2>
組卷:270引用:5難度:0.7 -
5.已知M=(2a+1)(a+3),N=a2+6a+2,則( ?。?/h2>
組卷:68引用:2難度:0.7 -
6.已知p:0<x<2,那么p的一個(gè)充分不必要條件是( ?。?/h2>
組卷:779引用:33難度:0.9 -
7.已知函數(shù)f(x)=
在(2,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( ?。?/h2>ax-1x-a組卷:3534引用:19難度:0.8
三、解答題:共70分,解答必須寫出必要的文字說明、證明過程或者演算步驟.
-
21.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),且對任意的正實(shí)數(shù)x,y都有f(xy)=f(x)+f(y),且當(dāng)x>1時(shí),f(x)>0,f(4)=1,
(1)求證:f(1)=0;
(2)求f();116
(3)解不等式f(x)+f(x-3)≤1.組卷:3055引用:12難度:0.1 -
22.已知函數(shù)f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=2x+1.
(1)求函數(shù)f(x),g(x)的解析式;
(2)若對任意x∈[1,+∞),不等式f(2x)≥mg(x)-2恒成立,求實(shí)數(shù)m的最大值.組卷:134引用:8難度:0.4