設f(x)是可導函數(shù),且lim△x→0f(x0-2△x)-f(x0)△x=2,則f′(x0)=( )
lim
△
x
→
0
f
(
x
0
-
2
△
x
)
-
f
(
x
0
)
△
x
=
2
,
則
f
′
(
x
0
)
【考點】極限及其運算.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:133引用:30難度:0.9
相似題
-
1.如圖:通過以“直”代“曲”無限逼近的方法求曲邊梯形的面積的步驟是
發(fā)布:2024/11/11 8:0:1組卷:14引用:1難度:0.7 -
2.設f(x)在x0處可導,下列式子與f'(x0)相等的是( )
發(fā)布:2024/11/17 17:30:3組卷:255引用:2難度:0.7 -
3.我們知道,函數(shù)y=f(x)在點x0處的導數(shù)
,由極限的意義可知,當△x充分小時,f′(x0)=lim△x→0△y△x=lim△x→0=f(x0+△x)-f(x0)△x=f′(x0),即△y≈f′(x0)△x,從而f(x0+△x)≈f(x0)+f′(x0)△x,這是一個簡單的近似計算公式,它表明可以根據(jù)給定點的函數(shù)值和導數(shù)值求函數(shù)的增量或函數(shù)值的近似值.我們可以用它計算△y△x的近似值為( ?。?(cos7π40,π≈3.14)3≈1.732發(fā)布:2024/12/29 7:30:2組卷:46引用:2難度:0.6