當前位置:
試題詳情
已知函數(shù)f(x)=x2+m,其中m∈R.定義數(shù)列{an}如下:a1=0,an+1=f(an),n∈N*.
(1)當m=1時,求a2,a3,a4的值;
(2)是否存在實數(shù)m,使a2,a3,a4構(gòu)成公差不為0的等差數(shù)列?若存在,請求出實數(shù)m的值;若不存在,請說明理由;
(3)求證:當m>14時,總能找到k∈N*,使得ak>2015.
m
>
1
4
【考點】數(shù)列與函數(shù)的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:64引用:3難度:0.3
相似題
-
1.已知一組2n(n∈N*)個數(shù)據(jù):a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數(shù)為N,方差為s2,則( )
發(fā)布:2024/12/29 7:30:2組卷:54引用:4難度:0.5 -
2.已知點A
是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點,等比數(shù)列an的前n項和為f(n)-c,數(shù)列bn(bn>0)的首項為c,且前n項和Sn滿足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求數(shù)列{an}與{bn}的通項公式.
(2)若數(shù)列的前n項和為Tn,問滿足Tn{1bnbn+1}的最小整數(shù)是多少?>10002011
(3)若,求數(shù)列Cn的前n項和Pn.Cn=-2bnan發(fā)布:2025/1/12 8:0:1組卷:35引用:3難度:0.1 -
3.已知公比為q的正項等比數(shù)列{an},其首項a1>1,前n項和為Sn,前n項積為Tn,且函數(shù)f(x)=x(x+a1)(x+a2)?(x+a9)在點(0,0)處切線斜率為1,則( ?。?/h2>
發(fā)布:2024/12/29 10:30:1組卷:30引用:3難度:0.5
把好題分享給你的好友吧~~