閱讀以下材料,完成以下兩個問題.
[閱讀材料]已知:如圖,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,過D作DF∥BA交AE于點F,DF=AC.求證:AE平分∠BAC.
結(jié)合此題,DE=EC,點E是DC的中點,考慮倍長,并且要考慮連接哪兩點,目的是證明全等,從而轉(zhuǎn)移邊和角.有兩種考慮方法:①考慮倍長FE,如圖(1)所示;②考慮倍長AE,如圖(2)所示![](https://img.jyeoo.net/quiz/images/202011/209/5b8a8266.png)
以圖(1)為例,證明過程如下:
證明:延長FE至G,使EG=EF,連接CG.
在△DEF和△CEG中,
ED=EC ∠DEF=∠CEG EF=EG
,
∴△DEF≌△CEG(SAS).
∴DF=CG,∠DFE=∠G.
∵DF=AC,
∴CG=AC.
∴∠G=∠CAE.
∴∠DFE=∠CAE.
∵DF∥AB,
∴∠DFE=∠BAE.
∴∠BAE=∠CAE.
∴AE平分∠BAC.
問題1:參考上述方法,請完成圖(2)的證明.
問題2:根據(jù)上述材料,完成下列問題:
已知,如圖3,在△ABC中,AD是BC邊上的中線,分別以AB,AC為直角邊向外作等腰直角三角形,∠BAE=∠CAF=90°,AE=AB,AC=AF,AD=3,求EF的長.
ED = EC |
∠ DEF =∠ CEG |
EF = EG |
【考點】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2486引用:4難度:0.3
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:185引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1693引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:145引用:3難度:0.1