古希臘后期的數(shù)學(xué)家帕普斯在他的《數(shù)學(xué)匯編》中探討了圓錐曲線的焦點(diǎn)和準(zhǔn)線的性質(zhì):平面內(nèi)到一定點(diǎn)和定直線的距離成一定比例的所有點(diǎn)的軌跡是一圓錐曲線.這就是圓錐曲線的第二定義或稱為統(tǒng)一定義.若平面內(nèi)一動(dòng)點(diǎn)P(x,y)到定點(diǎn)A(1,0)和到定直線x=4的距離之比是12,則點(diǎn)P的軌跡為( ?。?/h1>
1
2
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/14 5:0:1組卷:40引用:3難度:0.7
相似題
-
1.點(diǎn)P為△ABC所在平面內(nèi)的動(dòng)點(diǎn),滿足
=t(AP),t∈(0,+∞),則點(diǎn)P的軌跡通過△ABC的( )AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點(diǎn)E為BC的中點(diǎn).四棱錐P-ABCD的所有頂點(diǎn)都在同一個(gè)球面上,點(diǎn)M是該球面上的一動(dòng)點(diǎn),且PM⊥AE,則點(diǎn)M的軌跡的長(zhǎng)度為( )
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6 -
3.已知兩個(gè)定點(diǎn)A(-2,0),B(1,0),如果動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)求點(diǎn)P的軌跡方程并說明該軌跡是什么圖形;
(2)若直線l:y=kx+1分別與點(diǎn)P的軌跡和圓(x+2)2+(y-4)2=4都有公共點(diǎn),求實(shí)數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:42引用:3難度:0.5
相關(guān)試卷