設(shè)函數(shù)f(x)=ax-a-x(a>0,a≠1),f(1)=32.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值為-1,求m.
3
2
【考點(diǎn)】函數(shù)的最值;函數(shù)解析式的求解及常用方法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:58引用:3難度:0.6
相似題
-
1.函數(shù)f(x)=
x3-4x+m在[0,3]上的最小值為4,則m的值為( )13發(fā)布:2024/12/29 3:0:1組卷:110引用:4難度:0.9 -
2.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定義域內(nèi)存在最大值,且最大值為2,g(x)=
,若對(duì)任意x1∈[-1,m?2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值可以是( )12發(fā)布:2024/12/29 13:30:1組卷:133引用:3難度:0.5 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的兩根,且x1<x2,則
的最大值是 .ax1x22發(fā)布:2024/12/29 13:30:1組卷:121引用:4難度:0.5
把好題分享給你的好友吧~~