2022-2023學(xué)年吉林省長(zhǎng)春市農(nóng)安縣高一(上)期中數(shù)學(xué)試卷
發(fā)布:2024/12/17 23:0:2
一、選擇題(共11小題,每小題5分,滿分55分)
-
1.已知集合P={x|1<x<4},Q={x|2<x<3},則P∩Q=( ?。?/h2>
組卷:2247引用:15難度:0.9 -
2.已知a∈R,則“a>1”是“
<1”的( ?。?/h2>1a組卷:1085引用:66難度:0.8 -
3.已知命題p:?x0∈(1,3),x02-4x0+3<0,則命題p的否定是( ?。?/h2>
組卷:27引用:4難度:0.7 -
4.函數(shù)f(x)=ex+x-2的零點(diǎn)所在的區(qū)間是( ?。?/h2>
組卷:189引用:6難度:0.9 -
5.已知f(x)=ax2+bx是定義在[a-1,2a]上的偶函數(shù),那么a+b的值是( ?。?/h2>
組卷:13048引用:56難度:0.7 -
6.若a=100.1,b=lg0.8,c=log53.5,則( ?。?/h2>
組卷:107引用:6難度:0.8 -
7.對(duì)于任意實(shí)數(shù)a,b,c,d,下列正確的結(jié)論為( ?。?/h2>
組卷:31引用:2難度:0.9 -
8.函數(shù)y=x2-2|x|(x∈R)的部分圖象可能是( )
組卷:570引用:10難度:0.6 -
9.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=x+1,則當(dāng)x∈(-∞,0)時(shí),f(x)=( ?。?/h2>
組卷:50引用:2難度:0.7 -
10.設(shè)函數(shù)f(x)=
,則f(-2)+f(log212)=( ?。?/h2>1+log2(2-x),x<12x-1,x≥1組卷:7813引用:157難度:0.9 -
11.已知函數(shù)f(x)=x2+2(a-1)x+2在[4,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是( ?。?/h2>
組卷:122引用:2難度:0.8
四、解答題(共11小題,滿分132分)
-
33.設(shè)函數(shù)f(x)=ax-a-x(a>0,a≠1),f(1)=
.32
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值為-1,求m.組卷:58引用:3難度:0.6 -
34.已知關(guān)于x的不等式ax2-3x+2>0的解集為{x|x<1,或x>b}.
(1)求a,b的值;
(2)當(dāng)x>0,y>0,且時(shí),有2x+y≥k2+k+2恒成立,求k的取值范圍.ax+by=1組卷:323引用:53難度:0.6