某數(shù)學(xué)興趣小組運(yùn)用《幾何畫板》軟件探究y=ax2(a>0)型拋物線圖象.發(fā)現(xiàn):如圖1所示,該類型圖象上任意一點(diǎn)P到定點(diǎn)F(0,14a)的距離PF,始終等于它到定直線l:y=-14a的距離PN(該結(jié)論不需要證明).他們稱:定點(diǎn)F為圖象的焦點(diǎn),定直線l為圖象的準(zhǔn)線,y=-14a叫做拋物線的準(zhǔn)線方程.準(zhǔn)線l與y軸的交點(diǎn)為H.其中原點(diǎn)O為FH的中點(diǎn),F(xiàn)H=2OF=12a.例如,拋物線y=2x2,其焦點(diǎn)坐標(biāo)為F(0,18),準(zhǔn)線方程為l:y=-18,其中PF=PN,F(xiàn)H=2OF=14.
![](https://img.jyeoo.net/quiz/images/svg/202306/670/024cce1a.png)
【基礎(chǔ)訓(xùn)練】
(1)請(qǐng)分別直接寫出拋物線y=14x2的焦點(diǎn)坐標(biāo)和準(zhǔn)線l的方程:(0,1)(0,1),y=-1y=-1;
【技能訓(xùn)練】
(2)如圖2,已知拋物線y=14x2上一點(diǎn)P(x0,y0)(x0>0)到焦點(diǎn)F的距離是它到x軸距離的3倍,求點(diǎn)P的坐標(biāo);
【能力提升】
(3)如圖3,已知拋物線y=14x2的焦點(diǎn)為F,準(zhǔn)線方程為l.直線m:y=12x-3交y軸于點(diǎn)C,拋物線上動(dòng)點(diǎn)P到x軸的距離為d1,到直線m的距離為d2,請(qǐng)直接寫出d1+d2的最小值;
【拓展延伸】
該興趣小組繼續(xù)探究還發(fā)現(xiàn):若將拋物線y=ax2(a>0)平移至y=a(x-h)2+k(a>0).拋物線y=a(x-h)2+k(a>0)內(nèi)有一定點(diǎn)F(h,k+14a),直線l過(guò)點(diǎn)M(h,k-14a)且與x軸平行.當(dāng)動(dòng)點(diǎn)P在該拋物線上運(yùn)動(dòng)時(shí),點(diǎn)P到直線l的距離PP1始終等于點(diǎn)P到點(diǎn)F的距離(該結(jié)論不需要證明).例如:拋物線y=2(x-1)2+3上的動(dòng)點(diǎn)P到點(diǎn)F(1,258)的距離等于點(diǎn)P到直線l:y=238的距離.
請(qǐng)閱讀上面的材料,探究下題:
(4)如圖4,點(diǎn)D(-1,32)是第二象限內(nèi)一定點(diǎn),點(diǎn)P是拋物線y=14x2-1上一動(dòng)點(diǎn).當(dāng)PO+PD取最小值時(shí),請(qǐng)求出△POD的面積.
1
4
a
1
4
a
1
4
a
1
2
a
1
8
1
8
1
4
1
4
1
4
1
4
1
2
1
4
a
1
4
a
25
8
23
8
3
2
1
4
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(0,1);y=-1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 8:0:8組卷:2483引用:5難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個(gè)交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對(duì)稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問(wèn):
①m取何值時(shí),過(guò)點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請(qǐng)求出此時(shí)m的值;若不可能,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為.
發(fā)布:2024/12/23 17:30:9組卷:3647引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7
相關(guān)試卷