(1)用兩種不同方法計算同圖形的面積,可以得到一個等式,如圖1,是用長為a,寬為b(a>b)的四個全等長方形拼成一個大正方形,用兩種不同的方法計算陰影部分(小正方形)的面積,可以得到(a-b)2、(a+b)2、ab三者之間的等量關系式 (a+b)2=(a-b)2+4ab(a+b)2=(a-b)2+4ab.
(2)類似地,用兩種不同的方法計算同一個幾何體的體積,也可以得到一個等式,如圖2,觀察大正方體分割,可以得到等式:(a+b)3=a3+3a2b+3ab2+b3(a+b)3=a3+3a2b+3ab2+b3.
(3)利用上面所得的結論解答:
①已知x+y=6,xy=5,求x-y的值.
②已知|a+b-5|+(ab-6)2=0,求a3+b3的值.
【答案】(a+b)2=(a-b)2+4ab;(a+b)3=a3+3a2b+3ab2+b3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:201引用:3難度:0.6
相似題
-
1.如圖所示的是正方形的房屋結構平面圖,其中主臥與客臥都是正方形,其面積之和比其余面積(陰影部分)多6.25m2,則主臥與客臥的周長差是( )
發(fā)布:2025/1/1 6:30:3組卷:197引用:3難度:0.6 -
2.學習整式乘法時,老師拿出三種型號卡片,如圖1.
(1)利用多項式與多項式相乘的法則,計算:(a+2b)(a+b)=;
(2)選取1張A型卡片,4張C型卡片,則應取 張B型卡片才能用它們拼成一個新的正方形,此新的正方形的邊長是 (用含a,b的代數式表示);
(3)選取4張C型卡片在紙上按圖2的方式拼圖,并剪出中間正方形作為第四種D型卡片,由此可檢驗的等量關系為 ;
(4)選取1張D型卡片,3張C型卡片按圖3的方式不重復的疊放長方形MNPQ框架內,已知NP的長度固定不變,MN的長度可以變化,且MN≠0.圖中兩陰影部分(長方形)的面積分別表示為S1,S2,若S1-S2=3b2,則a與b有什么關系?請說明理由.發(fā)布:2024/12/23 18:0:1組卷:3145引用:5難度:0.1 -
3.如圖,兩個正方形邊長分別為a,b,如果a+b=10,ab=18,則陰影部分的面積為.
發(fā)布:2024/12/23 18:0:1組卷:1969引用:6難度:0.5