試卷征集
加入會(huì)員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2021-2022學(xué)年福建省三明市寧化縣七年級(jí)(下)期中數(shù)學(xué)試卷

發(fā)布:2024/7/9 8:0:8

一、選擇題(本大題共10小題,共40分)

  • 1.下列運(yùn)算正確的是( ?。?/h2>

    組卷:247引用:5難度:0.8
  • 2.我們知道,圓的周長(zhǎng)公式是:C=2πr,那么在這個(gè)公式中,以下關(guān)于變量和常量的說(shuō)法正確的是( ?。?/h2>

    組卷:54引用:3難度:0.7
  • 3.如圖,點(diǎn)F,E分別在線段AB和CD上,下列條件能判定AB∥CD的是(  )

    組卷:1269引用:22難度:0.9
  • 4.如圖,已知∠ABC=∠DCB,添加下列條件,不能使△ABC≌△DCB的是( ?。?/h2>

    組卷:601引用:11難度:0.7
  • 5.下列各式中,不能用平方差公式計(jì)算的是( ?。?/h2>

    組卷:177引用:3難度:0.8
  • 6.若∠α與∠β是內(nèi)錯(cuò)角,且∠α=50°,則∠β的度數(shù)為( ?。?/h2>

    組卷:418引用:15難度:0.9
  • 7.在某次實(shí)驗(yàn)中,測(cè)得兩個(gè)變量m和v之間的4組對(duì)應(yīng)數(shù)據(jù)如下表
     2 3 4
     v 2.01 4.910.03  17.1
    則m與v之間的關(guān)系最接近于下列各關(guān)系式中的(  )

    組卷:932引用:9難度:0.9
  • 8.如圖,在△ABC中,已知點(diǎn)D,E,F(xiàn)分別是BC,AD,CE的中點(diǎn),且△ABC的面積為16,則△BEF的面積是(  )

    組卷:4366引用:21難度:0.5

三、解答題(本大題共9小題,共86分)

  • 24.閱讀以下材料:
    對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Napier,1550~1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Euler,1707~1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.
    對(duì)數(shù)的定義:一般地,若ax=N(a>0,a≠1),則x叫做以a為底N的對(duì)數(shù),記作x=logaN.如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對(duì)數(shù)式2=log525可以轉(zhuǎn)化為52=25.我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):
    loga(M?N)=logaM+logaN(a>0,a≠1,M>0,N>0).
    理由如下:設(shè)logaM=m,logaN=n,則M=am,N=an
    ∴M?N=am?an=am+n
    由對(duì)數(shù)的定義,得m+n=loga(M?N).
    又∵m+n=logaM+logaN,
    ∴l(xiāng)oga(M?N)=logaM+logaN.
    解答下列問(wèn)題:
    (1)將指數(shù)式34=81轉(zhuǎn)化為對(duì)數(shù)式:
    ;
    (2)求證:
    log
    a
    M
    N
    =
    log
    a
    M
    -
    log
    a
    N
    a
    0
    ,
    a
    1
    ,
    M
    0
    N
    0
    ;
    (3)拓展運(yùn)用:計(jì)算:log832+log84-log82.

    組卷:105引用:1難度:0.5
  • 25.(1)某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形.如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線l經(jīng)過(guò)點(diǎn)A,BD⊥直線l,CE⊥直線l,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
    (2)組員小劉想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線l上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
    (3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來(lái)解決問(wèn)題:如圖3,過(guò)△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,AH是BC邊上的高,延長(zhǎng)HA交EG于點(diǎn)I,求證:I是EG的中點(diǎn).

    組卷:12945引用:40難度:0.3
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正