試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2021-2022學年北京市101中學九年級(下)入學數(shù)學試卷

發(fā)布:2024/4/20 14:35:0

一、選擇題:本大題共8小題,每題2分,共16分。

  • 1.在國家大數(shù)據(jù)戰(zhàn)略的引領下,我國在人工智能領域取得顯著成就,自主研發(fā)的人工智能“絕藝”獲得全球最前沿的人工智能賽事冠軍,這得益于所建立的大數(shù)據(jù)中心的規(guī)模和數(shù)據(jù)存儲量,它們決定著人工智能深度學習的質量和速度,其中的一個大數(shù)據(jù)中心能存儲58000000000本書籍,將58000000000用科學記數(shù)法表示應為( ?。?/h2>

    組卷:345引用:20難度:0.9
  • 2.下列安全圖標中,是中心對稱圖形但不是軸對稱圖形的是( ?。?/h2>

    組卷:221引用:6難度:0.9
  • 3.拋物線y=3(x-1)2+5的頂點坐標是(  )

    組卷:550引用:8難度:0.8
  • 4.如圖,AC與BD相交于點E,AD∥BC.若AE=2,CE=3,AD=3,則BC的長度是( ?。?/h2>

    組卷:69引用:6難度:0.9
  • 5.下列函數(shù)中,當x>0時,y的值隨著x的值增大而減小的是( ?。?/h2>

    組卷:187引用:1難度:0.6
  • 6.如圖,在△ABC中,AB=AC,AD⊥BC于點 D.若BC=24,cosB=
    12
    13
    ,則AD的長為( ?。?/h2>

    組卷:839引用:6難度:0.8
  • 7.如圖,等腰直角三角形ABC中,∠ABC=90°,BA=BC,將BC繞點B順時針旋轉θ(0°<θ<90°),得到BP,連接CP,過點A作AH⊥CP交CP的延長線于點H,連接AP,則隨著θ的增大,∠PAH的度數(shù)( ?。?/h2>

    組卷:549引用:6難度:0.5
  • 8.小明使用圖形計算器探究函數(shù)y=
    ax
    x
    -
    b
    2
    的圖象,他輸入了一組a,b的值,得到了下面的函數(shù)圖象,由學習函數(shù)的經驗,可以推斷出小明輸入的a,b的值滿足( ?。?/h2>

    組卷:865引用:14難度:0.6

二、填空題:本大題共8小題,每題2分,共16分。

  • 9.將二次函數(shù)y=x2-4x+5化成y=a(x-h)2+k的形式為

    組卷:2062引用:37難度:0.6

三、解答題(共68分,第17-22題,每題5分,第23-24題,每題6分,第25題,5分,第26-28題,每題7分)解答應寫出文字說明、演算步驟或證明過程。

  • 27.在△ABC中,∠ABC=90°,BA=BC,點D為線段AC上一點,將線段BD繞點B逆時針旋轉90°,得到線段BE,連接DE.
    (1)①請補全圖形;
    ②寫出CD,AD,ED之間的數(shù)量關系,并證明;
    (2)取AD中點F,連接BF、CE,猜想CE與BF的位置關系與數(shù)量關系,并證明.

    組卷:662引用:6難度:0.1
  • 28.定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段a與線段b的“冰雪距離”.已知O(0,0),A(
    2
    ,
    2
    ),B(m,n),C(m,n+2)是平面直角坐標系中四點.
    (1)根據(jù)上述定義,完成下面的問題:
    ①當m=2
    2
    ,n=
    2
    時,如圖1,線段BC與線段OA的“冰雪距離”是
    ;
    ②當m=2
    2
    時,線段BC與線段OA的“冰雪距離”是
    2
    ,則n的取值范圍是

    (2)如圖2,若點B落在圓心為A,半徑為
    2
    的圓上,當n≥
    2
    時,線段BC與線段OA的“冰雪距離”記為d,結合圖象,求d的最小值;
    (3)當m的值變化時,動線段BC與線段OA的“冰雪距離”始終為
    2
    ,線段BC的中點為M.直接寫出點M隨線段BC運動所走過的路徑長.

    組卷:288引用:5難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據(jù),本網將在三個工作日內改正