2013-2014學(xué)年新人教版九年級(jí)(上)寒假數(shù)學(xué)作業(yè)D(17)
發(fā)布:2024/4/20 14:35:0
一、選擇題
-
1.若有一條公共邊的兩個(gè)三角形稱為一對(duì)“共邊三角形”,則圖中以BC為公共邊的“共邊三角形”有( )
組卷:3253引用:38難度:0.7 -
2.已知坐標(biāo)平面上的機(jī)器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行動(dòng)結(jié)果為:在原地順時(shí)針旋轉(zhuǎn)A后,再向面對(duì)方向沿直線行走a.若機(jī)器人的位置在原點(diǎn),面對(duì)方向?yàn)閥軸的負(fù)半軸,則它完成一次指令[2,60°]后,所在位置的坐標(biāo)為( ?。?/h2>
組卷:227引用:39難度:0.5 -
3.為了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,則2S=2+22+23+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理計(jì)算出1+5+52+53+…+52009的值是( ?。?/h2>
組卷:861引用:41難度:0.5 -
4.計(jì)算機(jī)利用的是二進(jìn)制數(shù),它共有兩個(gè)數(shù)碼0、1,將一個(gè)十進(jìn)制數(shù)轉(zhuǎn)化為二進(jìn)制數(shù),只需把該數(shù)寫成若干個(gè)2n數(shù)的和,依次寫出1或0即可,如19(+)=16+2+1=1×24+0×23+0×22+1×21+1×20=10011(二)為二進(jìn)制下的5位數(shù),則十進(jìn)制數(shù)2004是二進(jìn)制下的( ?。?/h2>
組卷:452引用:3難度:0.7
三、解答題(共3小題,滿分0分)
-
11.我們知道,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.那么在什么情況下,它們會(huì)全等?
(1)閱讀與證明:
對(duì)于這兩個(gè)三角形均為直角三角形,顯然它們?nèi)龋?br />對(duì)于這兩個(gè)三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).
對(duì)于這兩個(gè)三角形均為銳角三角形,它們也全等,可證明如下:
已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求證:△ABC≌△A1B1C1.
(請(qǐng)你將下列證明過(guò)程補(bǔ)充完整.)
證明:分別過(guò)點(diǎn)B,B1作BD⊥CA于D,
B1D1⊥C1A1于D1.
則∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
(2)歸納與敘述:
由(1)可得到一個(gè)正確結(jié)論,請(qǐng)你寫出這個(gè)結(jié)論.組卷:2012引用:51難度:0.3 -
12.閱讀理解:
對(duì)于任意正實(shí)數(shù)a,b,∵≥0,∴a-(a-b)2+b≥0,∴a+b≥22ab,只有點(diǎn)a=b時(shí),等號(hào)成立.ab
結(jié)論:在a+b≥2(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥ab,只有當(dāng)a=b時(shí),a+b有最小值22p.p
根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1)若m>0,只有當(dāng)m=有最小值1m
(2)思考驗(yàn)證:
①如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn),(與點(diǎn)A,B不重合).過(guò)點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.試根據(jù)圖形驗(yàn)證a+b≥,并指出等號(hào)成立時(shí)的條件;2ab
②探索應(yīng)用:如圖2,已知A(-3,0),B(0,-4)P為雙曲線上的任意一點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.y=12x(x>0)組卷:939引用:46難度:0.1