試卷征集
加入會(huì)員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2013-2014學(xué)年江西省宜春中學(xué)高二(下)第三次周考數(shù)學(xué)試卷(理科)

發(fā)布:2025/1/5 23:0:2

一、選擇題

  • 1.已知函數(shù)f(x)=x+cosx,則f′(
    π
    6
    )=( ?。?/h2>

    組卷:554引用:8難度:0.9
  • 2.y′=
    1
    x
    2
    ,則y可以是下列各式中的(  )

    組卷:135引用:1難度:0.9
  • 3.曲線y=10+2lnx在點(diǎn)(1,10)處的切線方程是(  )

    組卷:5引用:2難度:0.7
  • 4.下列推理:
    ①由A,B為兩個(gè)不同的定點(diǎn),動(dòng)點(diǎn)P滿足|PA|-|PB|=2a<|AB|,得點(diǎn)P的軌跡為雙曲線;
    ②由a1=1,an=3n-1,求出S1,S2,S3猜想出數(shù)列{an}的前n項(xiàng)和Sn的表達(dá)式;
    ③由圓x2+y2=r2的面積πr2,猜想出橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1的面積S=abπ;
    ④科學(xué)家利用魚的沉浮原理制造潛艇.
    其中是歸納推理的命題個(gè)數(shù)為( ?。?/h2>

    組卷:22引用:2難度:0.9
  • 5.函數(shù)f(x)=exsinx的圖象在點(diǎn)(3,f(3))處的切線的傾斜角為( ?。?/h2>

    組卷:17引用:4難度:0.7

三、解答題

  • 16.(1)求下列函數(shù)的導(dǎo)數(shù)
    ①y=x(x2+
    1
    x
    +
    1
    x
    3
    );  ②y=(
    x
    +1)(
    1
    x
    -1);
    (2)已知函數(shù)f(x)=3x+2cosx+sinx,且a=
    f
    π
    2
    ,f′(x)是f(x)的導(dǎo)函數(shù),求過曲線y=x3上一點(diǎn)P(a,b)的切線方程.

    組卷:27引用:1難度:0.5
  • 17.已知曲線C:y=f(x)=x3-3px2(p∈R).
    (Ⅰ)當(dāng)p=
    1
    3
    時(shí),求曲線C的斜率為1的切線方程;
    (Ⅱ)設(shè)斜率為m的兩條直線與曲線C相切于A,B兩點(diǎn),求證:AB中點(diǎn)M在曲線C上;
    (Ⅲ)在(Ⅱ)的條件下,又已知直線AB的方程為:y=-x-1,求p,m的值.

    組卷:7引用:2難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正